Klimamodelle auf dem Prüfstand

Klimamodelle wurden vor zwanzig Jahren als der große Durchbruch gefeiert. Endlich konnte man die Realität im Computer nachvollziehen. Immer größer und schneller wurden die Rechner. Man glaubte fest daran, dass man nur noch i-Tüpfelchen justieren müsste und kurz vor dem Ziel war. Als dann aber die Rechenergebnisse mit der Realität verglichen wurden, ergaben sich riesige unerklärliche Diskrepanzen. Parallel dazu erarbeiteten Paläoklimatologen eine immer robustere Rekonstruktion des realen Klimaverlaufs, was die Probleme sogar noch offensichtlicher machte. Im Monatsabstand erscheinen heute Papers, die auf die schwerwiegenden Probleme der Klimamodellier hinweisen. Tests werden bevorzugt in der Mitte der Kleinen Eiszeit um 1800 begonnen, da dann die Erwärmung der letzten 200 Jahre so schön zum CO2-Anstieg passt. Geht man dann aber auf die letzten 1000 Jahre zurück, versagt die Technik.

Fabius Maximus wies im März 2016 auf das Offensichtliche hin: Die Modelle müssen viel schärfer getestet und kalibriert werden, bevor sie für Zukunftsmodellierungen freigegeben werden:

We can end the climate policy wars: demand a test of the models
[...] The policy debate turns on the reliability of the predictions of climate models. These can be tested to give “good enough” answers for policy decision-makers so that they can either proceed or require more research. I proposed one way to do this in Climate scientists can restart the climate change debate & win: test the models!— with includes a long list of cites (with links) to the literature about this topic. This post shows that such a test is in accord with both the norms of science and the work of climate scientists. [...] Models should be tested vs. out of sample observations to prevent “tuning” the model to match known data (even inadvertently), for the same reason that scientists run double-blind experiments). The future is the ideal out of sample data, since model designers cannot tune their models to it. Unfortunately…

“…if we had observations of the future, we obviously would trust them more than models, but unfortunately observations of the future are not available at this time.”
— Thomas R. Knutson and Robert E. Tuleya, note in Journal of Climate, December 2005.

There is a solution. The models from the first four IPCC assessment reports can be run with observations made after their design (from their future, our past) — a special kind of hindcast.

Ein anderer großer Kritikpunkt an den Kimamodellen ist das sogenannte Tuning. Hier werden die Klimamodelle so justiert, das sie möglichst nah an das gewünschte Ergebnis herankommen. Dies geschieht meist hinter verschlossenen Türen im dunklen Kämmerlein und leidet unter fehlender Transparenz. Hourdin et al. 2016 haben das Problem in einem Übersichtspaper ausführlich beschrieben. Judith Curry empfiehlt die Abhandlung wärmstens.

Two years ago, I did a post on Climate model tuning,  excerpts: “Arguably the most poorly documented aspect of climate models is how they are calibrated, or ‘tuned.’ I have raised a number of concerns in my Uncertainty Monster paper and also in previous blog posts.The existence of this paper highlights the failure of climate modeling groups to adequately document their tuning/calibration and to adequately confront the issues of introducing subjective bias into the models through the tuning process.”

Think about it for a minute. Every climate model manages to accurately reproduce the 20th century global warming, in spite of the fact that that the climate sensitivity to CO2 among these models varies by a factor of two. How is this accomplished? Does model tuning have anything to do with this?

Ganzen Beitrag auf Climate Etc. lesen.

Im November 2016 beschrieb Paul Voosen im angesehenen Fachblatt Science die Notwendigkeit, die Geheimniskrämerei zu beenden und die Black Boxes im Sinne der Transparenz für die Öffentlichkeit zu öffnen:

Climate scientists open up their black boxes to scrutiny
Climate models render as much as they can by applying the laws of physics to imaginary boxes tens of kilometers a side. But some processes, like cloud formation, are too fine-grained for that, and so modelers use “parameterizations”: equations meant to approximate their effects. For years, climate scientists have tuned their parameterizations so that the model overall matches climate records. But fearing criticism by climate skeptics, they have largely kept quiet about how they tune their models, and by how much. That is now changing. By writing up tuning strategies and making them publicly available for the first time, groups hope to learn how to make their predictions more reliable—and more transparent.